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ABSTRACT: The analysis of soil slopes stability is an issue being analyzed using various methods such 
as limit equilibrium and its relevant software. In this paper, limit equilibrium method based on plasticity 
theory has been used. In this paper, Based on upper and lower bound limit theorem and using principle of 
virtual work for calculations, the authors will introduce an overturning failure criterion to govern both the 
kinematically and statically admissible fields in the limit analysis and overall factor of safety of slopes 
stability is introduced at the end of this research. This research utilizes rigid finite element method 
considering the rotating-sliding mechanism. The results comparisons of the current research with previous 
ones show considerable results. 
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INTRODUCTION 

 
 The Finite Element Method (FEM) based on limit analysis is a conventional method in analyzing the limit state 
issues for various researchers. An obvious drawback with the traditional FEM-based limit analysis approaches being 
applied to rock slopes is their inability to characterize the behavior of discontinuous rock masses. In this regard, a 
good alternative would be the rigid FEM. REFM is inspired by a technique called Rigid Body Spring Model (RFSM) 
introduced in 1977. (1) 
 With a lower degree of freedom for the elements considered in the RFEM than that in the traditional FEM, the 
computational efficiency may be much improved. Importantly, the physical discontinuities in discontinuous media can 
be reasonably treated as interfaces between the adjacent rigid elements in RFEM. (2) 
 In RFEM, The pre-process of data and the process of analysis is same as conventional FEM but the difference 
is that the main 2 items in RFEM are “Elements” and “Interface”, whereas the main items in FEM are “Elements” and 
“Mesh”. In this method, each element is considered Rigid. the study area has been meshed in a way that connects 
each element via interface. Displacements in each point of the rigid element are related to rotational and translational 
movements of the center of element.  
 In RFEM, the displacements occurred in the center of elements are our main variables, whereas the main 
variables in conventional FEM are displacements in domain nodes. 
 Despite the Gauss Stress Tensor method in traditional FEM, the stress-strain analysis of the forces at the 
element’s interface is calculated with a different method in a way that while using Mohr-Coulomb failure condition, 
the normal and shear forces over each interface are directly affecting failure. In fact, it is assumed that the interfaces 
between rigid elements may be our failures surfaces which result in the calculations being so sensitive to dimension 
and mesh design of the domain. (3)  
 
Assumption for Numerical Discretization Based on Rigid Finite Elements 
The following assumptions are generally taken in a RFEM:  

- All elements are assumed to be rigid and are connected to one another by the element interface.  
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- The deformation energy of a system is stored in the interfaces only, and a discontinuous velocity field is 
allowed at the interface.  

- The interfaces are assumed to be isotropic, and their deformation is perfectly plastic, obeying the Mohr 
Coulomb yield condition and the associated flow rule. With these 

Assumptions, the “compatibility” and “equilibrium equations” between rigid elements can be found as follows: (2)  
 
Compatibility Equation of Discontinuous Kinematical Admissible Velocity Field 
 In previous RFEM-based limit studies, the constraints of compatibility were considered in a way that rotation had 
been ignored in the center of the elements. In a research done by Liu & Zhao, (2013) (2), the constraints of 

compatibility has been revised in a way that rotational velocity is used in the compatibility equation based on 
mathematical solution of toppling proposed by Goodman and Bray (1981). (4)  
 The discontinuous kinematically admissible velocity between two adjacent rigid elements in a typical upper 
bound analysis can now develop into two failure modes, namely, the simple sliding failure, which is controlled by the 
Mohr-Coulomb criterion, and the rotational failure, which is controlled by the new overturning criterion. A possible 
discontinuous kinematical admissible velocity field at the interface is shown in Fig. 1 where Pm denotes the center of 
the k-th interface between two typical rigid elements i and j. The discontinuous velocity can be conveniently measured 
by a strain rate vector as follows: 
 

 (1) 

  

where kn
, ks  and k = relative tangential, normal, and angular displacement rates, at the center of the joint, 

respectively. (2)  
 

 
Figure 1. Kinematically admissible discontinuous velocity field of interface between two rigid elements 

 
 The discontinuous strain rate vectors at all interfaces of a discretized RFEM domain can be assembled into the 
following vector: 
 

                      (2)  
where nd = number of all interfaces. 
 In local coordinates si

k -o- ni
k , the velocity at the center Pi

m of the kth interface caused by the centroid velocity of 
ith element can be written as: 
 

(3) 

  

Where in the vector below: 
(4) 

   

ui = centroid velocity of the ith element; ui
g and vi

g = translational velocities in the x-and y-directions of the global 
coordinates x-o-y; ωi

g = rotational velocity of the ith element. Ni/k = RFEM shape function of the ith element 
corresponding to the kth interface; and Li/k = matrix of direction cosines of the local si

k-o- ni
k axes for the kth interface 

with respect to the global coordinate system x-o-y. Specifically, Ni/k & Li/k are formulated as follows:  
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(5) 
 

(6) 

 
 

 
 Likewise, similar definitions can be made for element j, and the difference of velocity between element i and j 
can then be found as:  
 
 
 

   
The global velocity vector can be written as follows: 
 

(8)  
 

 
Its relation with the velocity of each specific element is written as follows: 
 

(9)   

 

The following selection matrices Ci and Cj for elements i and j are introduced: 
 

(10) 

 
 
Eq. (7) can then be reformulated as: 

(11)  
    Where 
 

(12)  
        
As a result, the global discontinuous velocity vector can be formulated as: 

 
(13)  

where 

(14)  
 
BT = strain rate matrix. The above formula represents the compatible condition between two adjacent rigid elements. 
This compatibility equation can be used to construct a numerical formulation for the consequent upper bound limit 
analysis. 
 
Equilibrium Equations for Rigid Element  
 To apply the lower bound limit theorem, one needs to derive the equilibrium equation of rigid elements as well. 
Assume that the generalized stresses at the interface k of a rigid element involve the shear force Vk, the normal force 
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Nk, and the moment Mk , all applied at the center of the interface as shown in Fig. 2. They can be denoted in a vector 
form as: (12) 

 
(15)  

 
Figure 2. Forces acting on one rigid finite element 

 
The global stress vector can be written collectively as follows (formula 16): 
 

(16)  
 
 According to the principle of virtual work, in a equilibrium system the external force along with the virtual 
displacement equals to internal energy waste. In RFEM, the energy for changing the form of system is stored between 
interfaces of the elements. There would be no stress occurred in rigid element and consequently there would be no 
energy waste inside the element. Therefore, the equation of principle of virtual work would be: 
  

 
(17)  

 
Substitution of Eq. (13) into Eq. (17) leads to: 
 

(18)  
 

Considering 0U   in general cases gives the following global equilibrium  
equation:  
  

(19)  
 
Where: 

(20)  
 

(21) 
 

 
(21) Represents global external force vector to the i-th component. This equilibrium is the same as the one proposed 
by Ferris and Tin-Loi (2001). (3) 
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Yield Criteria and Flow Rules for Sliding and Rotation Mechanisms 
 The kinematical admissible discontinuous velocity derived in the Equilibrium Equations for Rigid Element section 
can be separated into two failure modes, namely, relative sliding and rotation of an element with respect to its 
adjacent element. 
 Accordingly, two different yield conditions are employed to govern the failures at the interface: a Mohr-Coulomb 
criterion for the sliding failure and an overturning failure criterion for the rotation failure. 
 
Sliding Mechanism between Two Rigid Elements 
 Fig. (1), illustrates a translational sliding of element j over element i. Mobilization of this translational mechanism 
may be described by the Mohr-Coulomb criterion, i.e. 
 

(21)  
 
 Note that compression is taken to be positive here. Based on the generalized stress defined in Eq. (11), the 
above Mohr-Coulomb failure criterion may be recast to the following form: 
 

(22)  
 
where Δx = total length of interface. Note that the use of the absolute value of Vk indicates that the shear direction is 
unrestricted. 
 
Rotational Failure Mechanism between Two Rigid Elements  
 Element rotation has been ignored by previous RFEM-based limit analyses by other researchers and the main 
purpose was to maintain the condition of no gap or overlap between neighboring elements. Although it appears to 
be reasonable for the translation-dominant type of slope failure, the assumption proves to be inadequate to describe 
cases (such as upwelling underground water or increase in the height of soil slopes) where the rotation may be a 
contributing factor. The criterion is generalized based on the toppling failure criterion originally proposed by Goodman 
and Bray (1981). Consider a block on an inclined surface subjected to self-weight only (Fig. 3). Fig. 3 shows a state 
in which a rotation or toppling of the block is pending. The critical condition can be expressed as: 

 

(23)  
 

 
Figure 3. Failure criterion by block toppling 

 
 By multiplying both sides of the inequality in Eq. (24) with the weight W of the block, the following expression of 
the failure criterion is obtained: 
 

(24) 
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 To facilitate the subsequent numerical implementation, the sliding failure criterion and the overturning failure 
criterion for the k-th interface can be collectively expressed in the following matrix form:  
 

(25) 

 
 

 Where k


and k
c

= friction angle and cohesion at the k-th interface, respectively. The failure criteria at all 

interfaces can then be assembled in the following matrix formulation:  
 

(26) 

 
 
Where nd = number of interfaces in the discretized domain. 
 
Associated Flow Rule 
 In conjunction with the previously given failure criteria, additional constraints on the kinematically admissible 
velocity field are needed by considering the associated flow rule. For interface sliding, the associated flow rule 

assumes that the tangential velocity change,  , is accompanied by the separation velocity, tan   (Fig. 4). As for 

the interface overturning, the associated flow rule requires that the normal velocity change   corresponds to an 

opening angle change of 
2 / x 

 (Fig. 4).  
 
 

 
 

Figure 4. Sliding & Rotational Interface Failure modes between two rigid elements 

 
 In relation to the velocity vector in Eq. (1), these kinematic slip and rotation conditions can be expressed as Eg. 
(27): 
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(27)  
 
Assembling all the associated flow equations for the interface gives: 
 

(28)  
In Eq. (28), k vector is written as: 
 

(29) 
 

 

 Where k = vector of nonnegative plastic multipliers. By substituting Eq. (28) into BU  , the compatibility 
condition can be reformulated as follows: 
  

(30)  
 
 With previously given compatibility equation and equilibrium equation, the upper and lower bound limit analysis 
can be treated as a unified mathematical programming problem, which will be conducted in the Linear Programming 
for RFEM-Based Limit Analysis section. (2) 
 
Linear Programming for RFEM-Based Limit Analysis 
 As shown previously, the kinematically admissible velocity field has been separated into sliding and rotational 
modes, and the relative rotation between two rigid elements is governed by the toppling failure criterion in Eq. (24). 
Following the assumption of the associated flow rule, the relative rotation is further introduced into the governing 
equations of the kinematically and statically admissible fields in the limit analysis. In addition, the compatibility, 
equilibrium, and failure equations formulated previously are all in linear form. Taking this feature, the authors can 
then formulate the upper and lower bound theorems into a dual of two linear programming problems.(5) 
 
Primal Problem of Linear Programming for Kinematic Approach 
 The upper bound approach of limit theory states that any limit load multiplier λ for a kinematically admissible 
velocity restricted by the compatibility equation and associated flow rule, i.e., Eq. (30), cannot be smaller than the 
plastic collapse multiplier λc , i.e., λ≤ λc. An upper bound limit analysis aims to find the minimum of the load multiplier  
λmin to approximate λc. Using the associated flow rule in Eq. (28) in the virtual principle in Eq. (17) gives the following 
equation for the load multiplier: 
 

(31)  
 
Further substitution of the failure criteria in Eq. (27) into the previously revised virtual principle, leads to Eq. (34): 
 
By  

considering the complementary condition 0T   , the load multiplier can be formulated as follows: 
 

(33)  
 
 As a result, the upper bound approach can be formulated as the following linear programming problem Eq. (34): 
 
 
 
 

Notethat boundary conditions in the upper bound approach constitute mainly prescribed velocities, for example, 

0U  . Although they do not contribute to the real velocity field, the generalized primal variables in Eq. (34) will not 
include the quantities on the prescribed boundaries. 
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Dual Problem for Static Approach 
 In the lower bound approach of limit theory, any load multiplier λ corresponding to a statically admissible stress 
field constrained by the equilibrium equation and the failure criteria cannot be greater than the plastic collapse 
multiplier λc , i.e., λ≥ λc. The linear programming problem of a lower bound approach is to find the maximum of the 
load multiplier λmax. Alternatively, according to the dual theory of linear programming, the lower bound approach can 
be also formulated as the following dual of the primal 
problem of the corresponding upper bound approach: 

   

(35) 
 

 
According to the duality theory of linear programming, the upper (primal) and the lower (dual) bound solutions can 
be found by solving the following optimal (Karush- Kuhn-Tucker (KKT)) conditions utilized in MOSEK (7) package: 

 

(36) 

 
   

 The matrix contains  , 
Q

, U , 


 parameters which represent limit load multiplier, stress between elements, 
velocity of element and plastic multipliers respectively. To solve the matrix above, the boundary conditions and bound 
solutions must be satisfied by defining appropriate upper and lower limits for the unknowns in the matrix prior to 
solving the problem. 
 
Satifying the boundary conditions 
 In solving the problem, we satisfy the boundary conditions by assuming the upper and lower boundaries of 
velocity parameters of stability elements as zero. Therefore, the programming and enhancement techniques are 

being implemented and optimum limit load multiplier   and other velocity parameters are calculated. 
 
Evaluating the stability of soil slope 
 In previous sections, the formulation applied during the various phases of the research is comprehensively 
described. In this section, the problem and the edited algorithm is being evaluated using the programming algorithm 
used by Liu & Zhao, (2013) (2). 
 The problem is a soil slope with three different soil layers. The shear strength parameters and unit weight of 
each layer are also summarized in Table 1. The domain is discretized by an unstructured triangle mesh as shown in 
Fig. 5. (6) 
 

Table 1. Shear Strength Parameters and Unit Weights of Soils 
Soil Layer C  (kN/m2) 

 (degree)   


  (kN/m3) 

1 294 40 18.8 
2 9.8 5 18.8 
3 29.4 12 18.8 

 
 
 
 
 
 
 
 

Figure 5. Typical rigid finite-element mesh for the inhomogeneous slope using COSMOL software 
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 The method of reducing strength has been employed to find the factor of safety for this problem, by following the 
common definition of the factor of safety: 

 

(37) 
 

 

 Where c  and  = effective cohesion and internal frictional angle, respectively; and mc   and m   = reduced 
(mobilized) cohesion and frictional angle, respectively. 
 The factor of safety Fs is computed in conjunction with optimization of the limit load multiplier λ according to Eq. 
(36). Specifically, an initial value Fs (usually a small one) is chosen first to calculate the reduced cohesion and 

frictional angle mc 
and m 

according to Eq. (37). These two strength parameters are substituted into Eq. (26) to obtain 
an optimal limit load multiplier λ using the proposed method and MOSEK software. The process is repeated by 
gradually increasing the value of the factor of safety from its initial value. Consequently, a series of limit load 
multipliers in conjunction with the corresponding factor of safety can be obtained, which can be plotted in a figure like 
Fig. 6. The ultimate factor of safety for the problem corresponds to the value at the intersection of the curve with m 
the horizontal line λ =1.  
 

 
Figure 9. Determination of the factor of safety by optimizing limit loading multiplier 

 

 As is summarized in Table 2, in particular, the factor of safety in consideration for both sliding and rotation failure 
modes is found between the upper bound and lower bound obtained in this research and is compared with the results 
obtained by Spencer’s method along with the results obtained by (Liu & Zhao, 2013) (2).  

 
Table 2. Comparison of Factor of Safety by Various Methods 

sF
  Methods Authors 

0.41 Spencer’s method Present method 
0.38 Janbu method Present method 
0.47 Limit Analysis (LimitState:GEO) Present method 
0.405  RFEM-based limit analysis Present method 
0.421 RFEM-based limit analysis Liu & Zhao, 2013 

 
 As the table shows, the obtained factor of safety from RFEM-based limit analysis methods is in the range of 
other methods. The resulted algorithm (with 4% variation) has an appropriate conformity with Liu & Zhao (2013) 
results.  
Fig. (7) shows Kinematically admissible velocity fields. the arrows show the direction of velocity vectors in the model. 
 

 
Figure 7. Kinematically admissible velocity fields obtained Limit Analysis 
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 Fig. (8) shows the sliding line obtained from SLOPE/W in comparison with LimitState:GEO. The dashed line is 
the result of SLOPE/W software and the solid line for LimitState:GEO. 
 
 

 
Figure 8. Comparison of Sliding line results of SLOPE/W & LimitState:GEO for the inhomogeneous slope problem 

 
 The failure line obtained by LimitState:GEO software (solid line) shows that the soil slope at the upper part of 
Soil #2 (middle layer) has more penetration and consequently, is close to the result of SLOPE/W software. But in 
other parts, these 2 results are close to each other. Meanwhile, the failure lines of Janbu, Spencer and other methods 
are all close to the dashed line in Fig. (8). 
 
Implementing sensitivity analysis on parameters 
 For all the Analysis performed in this section, the variation of Factor of safety against the changes of geometrical 
parameters such as angle of slope and height of the block for the Soil #3 (Table.1) are being assessed. Also, the 
variation of Factor of safety against mechanical parameters changes of the soil such as internal friction angle and 
soil cohesion (when the internal friction angle is constant) is being evaluated. For comparison, Janbu method has 
been used in order to analyze the results by SLOPE/W software. 
 

 
Figure 9. Changes of Factor of Safety versus slope angle changes 

 
 The results show that the Factor of Safety difference (variance) in 2 above method is 2% from Angle 34° to 60°. 
The variance increases as the slope angle goes beyond 60°. 
 Fig. (10), shows the changes in soil cohesion and its effect on Factor of safety. The results show that the 
difference of Fs amounts in the two compared methods widens as the soil cohesion increases.  
 

 
Figure 10. Changes of Factor of Safety versus soil cohesion (with constant internal friction angle) 

 
Conclusion and results of the introduced method 
 Based on the RFEM, a general formulation of upper and lower bound limit analysis has been presented. The 
upper and lower bound solution is expressed as primal and dual linear programming problems that can be solved by 
an efficient and robust primal-dual interior-point method. This method proved that it may be used to solve problems 
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in large scale and numerous elements. One of the issues in solving this problem was the non-convergence of Factor 
of safety results. Better defining the Matrix of direction cosines and better meshing was very effective in solving the 
problem correctly. Future study will focus on the enhancing Rotational failure criterion and its improvement for being 
used in rock slopes. 
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